| | | 1 | 00 Years of Supernova Science | ce | | |----------------------------------|--|--|--|---|--| | | Abstract book: Here MON Welcoming words | TUE | WED | ТНО | FRI | | 09.00 | J. Larsson - A. Jerkstrand Chair: Anders Jerkstrand | Chair: Thomas Janka | Chair: Josefin Larsson | Chair: Kate Maguire | Chair: Ariel Goobar | | 09.00
09.40 | THE HISTORY OF CLASSIFICATION
IN THE SUPERNOVA ZOO
A. FILIPPENKO | NEUTRINOS AS UNIQUE SUPERNOVA MESSENGERS I. TAMBORRA | SUPERNOVAE AS CHEMICAL LABORATORIES :
DUST AND MOLECULES
I. DE LOOZE | UNDERSTANDING LIGHT CURVES
AND SPECTRA OF SNe
K. MAEDA | THE ACCELERATING UNIVERSE: HOW DID WE GET HERE AND WHAT'S NEXT? B. SCHMIDT | | 09.40
09.55 | Low Luminosity Type IIP Supernovae from ZTF Census of the Local Universe <i>K. Das</i> | Black Hole Supernovae in 2D and 3D:
From Collapse to Shock Breakout
O. Eggenberger-Andersen | Dust destruction by supernova remnants
in a turbulent interstellar medium
T. Scheffler | The landscape of CCSN progenitors and the late emergence of WR winds A. Gilkis | The tension in the tension:
the Hubble constant from blue type la supernovae
<i>C. Gall</i> | | 09.55
10.10 | Origins of Ca-rich supernovae
C-G. Touchard-Paxton | Systematic Progenitor and Explosion Parameters from Observations 1. Arcovi | The JWST View of the Dynamic ISM with Thermal Echoes of Cas A <i>J. Jencson</i> | Exploring pre-supernova mass loss with modelling of double-peaked Type lbc supernovae <i>R. Chiba</i> | Viewing the Hubble tension through a magnifying glass S. Taubenberger | | 10.10
10.25 | SN 2021yfj - The First Member
of a New Class of Si- and S-rich Supernovae
S. Schulze | Winds, Bubbles, Disks and Binaries:
hterpreting the Emission from Stripped-Envelope Supernovae
which show Increasing X-ray and Radio Luminosity
V. Dwarkadas | The metamorphosis of SN 1996cr
into a supernova remnant
D. Patnaude | 3D NLTE Radiative Transfer
for Supernovae in the Nebular Phase
<i>B. van Baal</i> | Unveiling Two Branches behind Type Ia Supernovae with Machine Learning <i>K. Uno</i> | | 10.55 | COFFEE BREAK Chair: Phillip Podsiadlowski | COFFEE BREAK Chair: Ragnhild Lunnan | COFFEE BREAK Chair: Evan O'Connor | CONFERENCE PHOTO COFFEE BREAK Chair: Takashi Moriya | COFFEE BREAK Chair: Peter Lundqvist | | 10.55
11.35 | SUPERNOVA 1987A
A ROSETTA STONE FOR SUPERNOVA RESEARCH
C. FRANSSON | SUPERLUMINOUS SUPERNOVAE THE BRIGHTEST TRANSIENTS IN COSMOS T-W. CHEN | THE CORE-COLLAPSE EXPLOSION MECHANISM:
FOUNDATIONS AND STATUS
T. JANKA | 10.55-11.10 Statistical Investigation on Radio Supernovae with Markov Chain Monte Carlo Analysis T. Matsuoka | EXPLODING WHITE DWARFS IN A NEW LIGHT: JWST's TRANSFORMATIVE MIR LEGACY BEGINS L. KWOK | | 11.35
11.50 | The remarkable diversity of supernovae from interacting binary stars <i>E. Laplace</i> | Two hundred (plus) SLSNe: light curves, spectra and physics from the new public SLSN Catalog <i>M. Nicholl</i> | 3D numerical study of magnetorotational effects
on extreme core-collapse supernovae
L. Kovalenko | 11.10-11.25
Nebular-Phase Spectra of Hydrogen-Poor
Superluminous Supernovae
<i>P. Blanchard</i> | Unveiling the progenitor demographics
of Type Ia supernovae
using their first to last photons
C. Liu | | 11.50
12.05 | Diversity in Hydrogen-rich Envelope Mass
of Type II Supernovae
<i>Q. Fang</i> | Type II Superluminous Supernova
light curve characterization
P. Pessi | Three-dimensional modeling of core-collapse supernovae K. Nakamura | 11.25-11.40 "Double-Acct" - the extraordinary double-peaked supernova, SN2020acct <i>C. Angus</i> | Type la Supernova Physics from Nebular-phase
JWST Observations in the MIR
J. DerKacy | | 12.05
12.20 | The early-time light curves of type II and type IIb supernovae from the ATLAS survey J. Anderson | Chasing eruptive mass loss prior to superluminous supernovae A. Gkini | Long-time supernova simulations: Exploring different classes of (magnetized and rotating) progenitors M. Gabler | 11.40-11.55 Testing the Physics of Massive Stars and Stellar Explosions with LIGO P. Podsialowski | Type la supernovae from explosions of
sub-Chandrasekhar-mass white dwarfs
in double white dwarf binaries
K. Shen | | 12.20
12.30 | 8 flash talks
Baer-Way, Terwel, Mandal,
Grayling, Gangopadhyay, Ding, Wiston | 6 flash talks
Fakiola, Hu,
Russeil, Sawada, Sheng, Tsalapatas | 8 flash talks
Umeda, Cornelius, Giudici, Gogilashvili,
Sand-Hellman, Singh, Hall, Bronner | 8 flash talks
Zsiros, Callan, Sears, Ko,
Kopsacheili, Taubenberger, LeBaron, Ghavamian | | | 14 | LUNCH | LUNCH | LUNCH | LUNCH | LUNCH | | | Chair: Stephen Smartt | Chair: Jesper Sollerman | | Chair: Dan Milisavjlevic | Chair: Seppo Mattila Discovery of a Relativistic Stripped Envelope Theo Le BL Superpoya | | 14.00 | Formation and Diagnostic Use of Carbon Lines in SESNe S. Barmentloo Electron-capture supernovae | KNUT LUNDMARK
THE DISCOVERER OF SUPERNOVAE
JOHAN KÄRNFELT | | 14.00-14.40 X-ray Eyes on Supernova Remnants and Compact Objects: Past, Present, and the Multi-Messenger Future S. SAFI-HARB | Type Ic-BL Supernova at z = 2.83 with JWST M. Siebert From Red Supergiants to Black Holes: | | 14.15
14.30 | Thermonuclear explosion or gravitational collapse? A. Holas A. Holas A. Holas | Using UV Supernova Observations | | 14.40-14.55 After the Explosion: Shock Heating and | Observational Constraints on Failed Supernovae from the Hubble Space Telescope 1. Pearson Disentangling the evolutionary paths of Supernova Remnants: observational evidence | | 14.45 | W. Jacobson-Galán Variability and extreme reddening | to Map RSG Mass Loss from Quiescent to Outburst A. Bostrom Binarity in massive star explosions | | Particle Acceleration in Supernova Remnants P. Slane 14.55-15.10 Constraints on circumstellar interaction and explosion | of (non) multi-wavelength emission I. Leonidaki The Most Distant Stellar Explosions with JWST | | 15.00 | in the progenitor stars of Type II supernovae C. Kilpatrick The Supernova Progenitor Luminosity Problem | P. Chen Core-collapse supernovae | | mechanism from the remnants of thermonuclear SNe C. Badenes 15.10-15.25 Tracing the Propagation of Shocks | D. Coulter The High-redshift Transient Universe with JWST | | 15.15 | E. Beasor | as probes of the star-formation history of the Universe S. Mattila | | in the Equatorial Ring of SN 1987A Over Decades C. Tegkelidis | A. Rest Shadowing LSST: Extremely Early Supernova Discoveries | | 15.15
15.45 | COFFEE BREAK | COFFEE BREAK | | EXTENDED BREAK | in the Nearby Universe D. Sand | | 15.45
16.25 | Chair: Tea Temim SUPERNOVA REMNANTS A HISTORY OF PEEKING INSIDE EXPLODED STARS D. MILISAVLJEVIC | Chair: Fritz Röpke THE DIVERSE FATES OF EXPLODING WHITE DWARFS R. PAKMOR | | Chair: Dan Maoz (session starts 18.00) | | | 16.25
16.40 | Detection of P, Cl, and K in Cassiopeia A with XRISM K. Matsunaga | Dynamics and stability of helium-rich detonation in
sub-Chandrasekhar mass SNe Ia: a continuing trial to find the
constraint via terrestrial cell-based theories and experiments
K. Iwata | | 18.00-18.15 Supernovae in the InfRared Avec Hubble (SIRAH): Survey Results and Cosmology C. Larison | END OF CONFERENCE | | 16.40
16.55 | Modelling the Remnant
of a Magnetorotational Supernova
<i>G. La Molfa</i> | SN 2023adsy a normal Type Ia Supernova
at z=2.9, discovered by JWST
E. Regos | | 18.15-18.30 Non-LTE radiative transfer simulations: Improved agreement of the double detonation with normal Type Ia supernovae C. Collins | (15.30) | | 16.55
17.10 | Imaging the signature of type Ia supernova explosion mechanism a novel approach using optical IFS to study the reverse shocked ejecta P. Das | All known Type Ia supernova models
fail to reproduce the observed luminosity-width correlation
<i>D. Kushnir</i> | | 18.30-18.45 Do spectral classes hint at different progenitors? A look at 91T and Normal SN Ia with probabilistic transient tomography W. Kerzendorf | | | 17.30
19.00
19.15
21.00 | OBSERVATORY VISIT GROUP 1 DINNER | OBSERVATORY VISIT GROUP 2 DINNER | | DINNER | | | | COLOR CODE: | | | | | | | CCSN SLSN Dust, pol | | | | | | | la SNe Remnants | | | | | | | Surveys and instr. Cosmology | | | | | | | Misc FLASH TALKS (32): | | | | | | | Monday
R. Baer-Way | A multiwavelength view of interaction in two core collapse su | pernovae revealing extreme | | | | | J. Terwel
S. Mandal | Searching for late-time signals of SNe interacting with circum
Imprints of thermonuclear supernova explosions hidden in the | nstellar material | | | | | M. Grayling
A. Gangopadhyay | BayeSN: Environmental dependence of SN Ia i-band second
The transitions in interacting supernovae | | | | | | Z. Ding
E. Wiston | A 3D Kinematic Reconstruction of the Crab Nebula That Inclu
Radio Observations of SN2012au - The Youngest Pulsar Wir | - | | | | | Tuesday C. Fakiola | On the isotopic yields of thermonuclear explosions in non-act | | | | | | Y. Hu E. Russeil | SN 2021aaev: A Hydrogen-Rich Superluminous Supernova E
Machine learning classification of superluminous supernovae | candidates in big data | | | | | R. Sawada
X. Sheng
K. Tsalapatas | Probing Pair-Instability Supernovae via 56Ni Decay Signatur
Attention-based Data Pre-processing and Upsampling for En
A thermonuclear supernova interacting with H- and He- defic | hancing SLSN-I Identification | | | | | K. Tsalapatas Wednesday H. Umeda | A thermonuclear supernova interacting with H- and He- defic Properties of the lowest-mass Fe-core collapse supernovae | ion onounistendi iliditetidi | | | | | M. Cornelius B. Giudici | Hunting for electron lepton number crossings in core-collapse
Long-Term Hydrodynamic Simulations of Core-Collapse Sup | | | | | | B. Gildici M. Gogilashvili W. Sand Hellman | Impact of Flavor Evolution on Core-collapse Sup
Investigating the nearby stripped envelope SN2024ehs: Effec | sics | | | | | A. Singh S. Hall | Deriving Time-Dependent Supernova Luminosity Functions v | | | | | | V. Bronner Thursday | Pulsating Red Supergiants: A New Perspective on Type II Su | | | | | | S. Zsíros
F. Callan | The James Webb Space Telescope Captures the Dusty SN 2 Including a Luminous Central Remnant in Radiative Transfer | | | | | | H. Sears
T. Ko | Space-based Observations of Type Ia SNe at Very Late Time
Revealing the Unique Multi-Structural Features of a Historica | es | | | | | M. Kopsacheili G. Csoernyei (presented by S. Taubenberger) | Discovery of new optical and X-ray supernova remnants in no SNe II the rescue: Determination of H0 based on SNe II in the | earby galaxies: Improved | | | | | N. LeBaron
P. Ghavamian | AT2024wpp in UV to NIR: The Unprecedented Evolution and
Electron-lon Equilibration and Cosmic Ray Acceleration in tw | Properties of a Luminous | | | | | | | | | |